A simple protocol to stabilize gold nanoparticles using amphiphilic block copolymers: stability studies and viable cellular uptake.

نویسندگان

  • Kamil Rahme
  • Patricia Vicendo
  • Cédric Ayela
  • Cédric Gaillard
  • Bruno Payré
  • Christophe Mingotaud
  • Fabienne Gauffre
چکیده

Di- and triblock non-ionic copolymers based on poly(ethylene oxide) and poly(propylene oxide) were studied for the stabilization of nanoparticles in water at high ionic strength. The effect of the molecular architecture (di- vs. triblock) of these amphiphilic copolymers was investigated by using gold nanoparticles (AuNPs) as probes for colloidal stability. The results demonstrate that both di- and triblock copolymers can provide long term stability, and that in both cases AuNPs are individually embedded within globules of polymers. However, in the case of diblock copolymers, the colloidal stability was related to the formation of micelles, in contrast with the case of triblock copolymers, which were previously shown to provide good stability even at concentrations at which micelles do not form. Quartz crystal microbalance (QCM) experiments showed that the presence of the hydrophobic block in the structure of the polymer is important to ensure quantitative adsorption upon a gold surface and to limit desorption. We demonstrate that with an appropriate choice of polymer, the polymer/AuNP hybrids can also undergo filtration and freeze-drying without noticeable aggregation, which can be very convenient for further applications. Finally, preliminary studies of the cytotoxicity effect on fibroblast cells show that the polymer/AuNP hybrids were not cytotoxic. TEM micrographs on ultrathin sections of cells after incubation with the colloidal solutions show that the nanoparticles were internalized into the cells, conserving their initial size and shape.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Amphiphilic Block Copolymer Nano-micelles: Effect of Length Ratio of the Hydrophilic Block

Block copolymer nano-micelles are especially important in cancer treatment because of their fine dimensions. In this article, three systems of amphiphilic copolymers with similar lengths and different ratios of the hydrophobic and hydrophilic chains are studied using implicit-solvent coarse-grained molecular dynamics simulations. The factor fphil is defined as the ratio of the number...

متن کامل

PEG-Polypeptide Dual Brush Block Copolymers: Synthesis and Application in Nanoparticle Surface PEGylation.

Amphiphilic polypeptide-containing hybrid dual brush block copolymers with controlled molecular weights and narrow molecular weight distributions were synthesized in one pot via ring-opening metathesis polymerization of sequentially added norbornyl-PEG and N-(2-((trimethylsilyl)amino)ethyl)-5-norbornene-endo-2,3-dicarboximide (M1) followed by ring-opening polymerization of amino acid N-carboxya...

متن کامل

Controlled supramolecular self-assembly of large nanoparticles in amphiphilic brush block copolymers.

To date the self-assembly of ordered metal nanoparticle (NP)/block copolymer hybrid materials has been limited to NPs with core diameters (D(core)) of less than 10 nm, which represents only a very small fraction of NPs with attractive size-dependent physical properties. Here this limitation has been circumvented using amphiphilic brush block copolymers as templates for the self-assembly of orde...

متن کامل

Enhanced stability of core-surface cross-linked micelles fabricated from amphiphilic brush copolymers.

"Stealth" nanoparticles made from polymer micelles have been widely explored as drug carriers for targeted drug delivery. High stability (i.e., low critical micelle concentration (CMC)) is required for their intravenous applications. Herein, we present a "core-surface cross-linking" concept to greatly enhance nanoparticle's stability: amphiphilic brush copolymers form core-surface cross-linked ...

متن کامل

Oxidation effect on templating of metal oxide nanoparticles within block copolymers

Amphiphilic norbornene-b-(norbornene dicarboxylic acid) diblock copolymers with different block ratios were prepared as templates for the incorporation of iron ions using an ion exchange protocol. The disordered arrangement of iron oxide particles within these copolymers was attributed to the oxidation of the iron ions and the strong interactions between iron oxide nanoparticles, particularly a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemistry

دوره 15 42  شماره 

صفحات  -

تاریخ انتشار 2009